LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic and Electronic Manipulation of Robust Ferroelectric Polymorphs

Photo from wikipedia

Polymorphism allows the symmetry of the lattice and spatial charge distributions of atomically thin materials to be designed. While various polymorphs for superconducting, magnetic, and topological states have been extensively… Click to show full abstract

Polymorphism allows the symmetry of the lattice and spatial charge distributions of atomically thin materials to be designed. While various polymorphs for superconducting, magnetic, and topological states have been extensively studied, polymorphic control is a challenge for robust ferroelectricity in atomically thin geometries. Here, the atomic and electric manipulation of ferroelectric polymorphs in Mo1−xWxTe2 is reported. Atomic manipulation for polymorphic control via chemical pressure (substituting tungsten for molybdenum atoms) and charge density modulation can realize tunable polar lattice structures and robust ferroelectricity up to T = 400 K with a constant coercive field in an atomically thin material. Owing to the effective inversion symmetry breaking, the ferroelectric switching withstands a charge carrier density of up to 1.1 × 1013 cm−2, developing an original diagram for ferroelectric switching in atomically thin materials.

Keywords: ferroelectric polymorphs; atomically thin; polymorphs; manipulation; electronic manipulation; atomic electronic

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.