LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near Ambient Condition Hydrogen Storage in a Synergized Tricomponent Hydride System

Photo from wikipedia

Reversible hydrogen storage over hydrides of light elements (HLEs) under ambient condition has been pursued actively for nearly two decades. However, because of unfavorable thermodynamics and/or severe kinetic barrier of… Click to show full abstract

Reversible hydrogen storage over hydrides of light elements (HLEs) under ambient condition has been pursued actively for nearly two decades. However, because of unfavorable thermodynamics and/or severe kinetic barrier of HLEs, limited progress has been made. Here, it is demonstrated that the interaction of LiBH4 with Mg(NH2)(2) and LiH, three of the most investigated HLEs, can lead to a fully reversible dehydrogenation/rehydrogenation cycle at temperatures below 373 K. More importantly, with the desorption enthalpy of 24 kJ (mol H-2)(-1) the dehydrogenation process at 1.0 bar H-2 is theoretically possible to be as low as 266 K. Characterization of this combination of HLEs shows that LiBH4 serves as a reagent complexing with intermediates and products of the dehydrogenation of Mg(NH2)(2)-LiH, and significantly alters the overall thermodynamic and kinetic properties of the system.

Keywords: hydrogen storage; ambient condition; system

Journal Title: Advanced Energy Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.