LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reaction kinetics of anodic biofilms under changing substrate concentrations: Uncovering shifts in Nernst‐Monod curves via substrate pulses

Photo by berlinboudoir from unsplash

In the present study, it is shown that the concentration dependency of undefined mixed culture anodic biofilms does not follow a single kinetic curve, such as the Nernst‐Monod curve. The… Click to show full abstract

In the present study, it is shown that the concentration dependency of undefined mixed culture anodic biofilms does not follow a single kinetic curve, such as the Nernst‐Monod curve. The biofilms adapt to concentration changes, which inevitably have to be applied to record kinetic curves, resulting in strong shifts of the kinetic parameters. The substrate concentration in a continuously operated bioelectrochemical system was changed rapidly via acetate pulses to record Nernst‐Monod curves which are not influenced by biofilm adaptation processes. The values of the maximum current density jmax and apparent half‐saturation rate constant Ks increased from 0.5 to 1 mA cm−2 and from 0.5 to 1.6 mmol L−1, respectively, within approximately 5 h. Double pulse experiments with a starvation phase between the two acetate pulses showed that jmax and Ks decrease reversibly through an adaptation process when no acetate is available. Pseudo‐capacitive charge values estimated from non‐turnover cyclic voltammograms (CV) led to the hypothesis that biofilm adaptation and the observed shift of the Nernst‐Monod curves occurred due to changes in the concentration of active redox proteins in the biofilm. It is argued that concentration‐related parameters of kinetic models for electroactive biofilms are only valid for the operating points where they have been determined and should always be reported with those conditions.

Keywords: reaction kinetics; monod curves; kinetics anodic; anodic biofilms; nernst monod; concentration

Journal Title: Engineering in Life Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.