LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Road Map for In Situ Grown Binder-Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors.

Photo by sendi_r_gibran from unsplash

Among several electrocatalysts for energy storage purposes including supercapacitors, metal-organic frameworks (MOFs), and their derivatives have spurred wide spread interest owing to their structural merits, multifariousness with tailor-made functionalities and… Click to show full abstract

Among several electrocatalysts for energy storage purposes including supercapacitors, metal-organic frameworks (MOFs), and their derivatives have spurred wide spread interest owing to their structural merits, multifariousness with tailor-made functionalities and tunable pore sizes. The electrochemical performance of supercapacitors can be further enhanced using in situ grown MOFs and their derivatives, eliminating the role of insulating binders whose "dead mass" contribution hampers the device capability otherwise. The expulsion of binders not only ensures better adhesion of catalyst material with the current collector but also facilitates the transport of electron and electrolyte ions and remedy cycle performance deterioration with better chemical stability. This review systematically summarizes different kinds of metal-ligand combinations for in situ grown MOFs and derivatives, preparation techniques, modification strategies, properties, and charge transport mechanisms as freestanding electrode materials in determining the performance of supercapacitors. In the end, the review also highlights potential promises, challenges, and state-of-the-art advancement in the rational design of electrodes to overcome the bottlenecks and to improve the capability of MOFs in energy storage applications.

Keywords: mofs derivatives; grown binder; situ grown; road map; map situ

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.