LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase transitions in a three-dimensional analogue of Klebanov-Strassler

Photo by rachitank from unsplash

We use top-down holography to study the thermodynamics of a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons theories with M-theory duals. For generic values of the parameter, the theories exhibit… Click to show full abstract

We use top-down holography to study the thermodynamics of a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons theories with M-theory duals. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential. For two specific values of the parameter they flow to an infrared fixed point or to a confining vacuum, respectively. As in the Klebanov-Strassler solution, on the gravity side the mass gap is generated by the smooth collapse to zero size of a cycle in the internal geometry. We uncover a rich phase diagram with thermal phase transitions of first and second order, a triple point and a critical point.

Keywords: transitions three; phase transitions; klebanov strassler; three dimensional; phase

Journal Title: Journal of High Energy Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.