LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties

Photo by brucekee from unsplash

Our hypothesis introduced (i) Tilia sp. leachate as the basic platform for Ag-AgCl nanoparticle phytosynthesis as a new bionanotechnological protocol, (ii) determination of Ag-AgCl colloidal properties during periodic temperature changes… Click to show full abstract

Our hypothesis introduced (i) Tilia sp. leachate as the basic platform for Ag-AgCl nanoparticle phytosynthesis as a new bionanotechnological protocol, (ii) determination of Ag-AgCl colloidal properties during periodic temperature changes and (iii) confirmation of formed colloid as an active and fundamental catalytic tool for degradation of organic pollutants. Easy-to-prepare Tilia sp. leachate was mixed with silver precursor to form the Ag-AgCl nanoparticle system. We used SEM and FTIR to determine Tilia matrix organic/inorganic compounds and then performed STEM, ICP-MS, UV/VIS and XRD analysis to phytosynthesize Ag-AgCl nanoparticles. We confirmed that Tilia sp. leachate contained specific biomolecules with nanoparticle synthesis potential. Colloidal Ag-AgCl nanoparticles revealed dominant spherical morphology with uniform mean diameter from 14 to 16 nm. There were no significant differences observed in ζ-potential, ionic strength, hydrodynamic dimension or pH value during 5 weeks with periodic temperature changes, thus confirming stable colloidal properties. In addition, this specialized application of Ag-AgCl nanoparticles was performed by effective 4-nitrophenol catalysis at low Ag-AgCl NP concentration and very rapid reaction kinetics.

Keywords: agcl nanoparticles; tilia leachate; colloidal agcl; agcl; phytosynthesis colloidal

Journal Title: Colloid and Polymer Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.