The electronic structures and spectroscopic properties of triphenylamine-based monostyryl and bis(styryl) dyes were studied using quantum chemical methods. The ground-state geometries of these dyes were optimized using the density functional… Click to show full abstract
The electronic structures and spectroscopic properties of triphenylamine-based monostyryl and bis(styryl) dyes were studied using quantum chemical methods. The ground-state geometries of these dyes were optimized using the density functional theory (DFT) method. The lowest singlet excited state was optimized using time-dependent density functional theory (TD-DFT). The absorption was also calculated using the ground-state geometries. All the calculations were carried out in the gas phase and in solvent. The results indicate that the absorption maxima calculated using the TD-DFT are in good agreement with those obtained experimentally. These dyes possess a large second-order non-linear property and this is mainly due to the strong donor-π-acceptor conjugation which is attributed to the excited state intramolecular charge transfer (ICT). There is a relationship between the hardness and first hyperpolarizability and second hyperpolarizability of mono- and bis(styryl) dyes. The efficiency of the intersystem crossing process can be improved by reducing the energy gap between the singlet and triplet excited states.
               
Click one of the above tabs to view related content.