LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decomposition Algorithms for Solving NP-hard Problems on a Quantum Annealer

Photo from archive.org

NP-hard problems such as the maximum clique or minimum vertex cover problems, two of Karp’s 21 NP-hard problems, have several applications in computational chemistry, biochemistry and computer network security. Adiabatic… Click to show full abstract

NP-hard problems such as the maximum clique or minimum vertex cover problems, two of Karp’s 21 NP-hard problems, have several applications in computational chemistry, biochemistry and computer network security. Adiabatic quantum annealers can search for the optimum value of such NP-hard optimization problems, given the problem can be embedded on their hardware. However, this is often not possible due to certain limitations of the hardware connectivity structure of the annealer. This paper studies a general framework for a decomposition algorithm for NP-hard graph problems aiming to identify an optimal set of vertices. Our generic algorithm allows us to recursively divide an instance until the generated subproblems can be embedded on the quantum annealer hardware and subsequently solved. The framework is applied to the maximum clique and minimum vertex cover problems, and we propose several pruning and reduction techniques to speed up the recursive decomposition. The performance of both algorithms is assessed in a detailed simulation study.

Keywords: algorithms solving; solving hard; hard problems; decomposition algorithms; decomposition; quantum annealer

Journal Title: Journal of Signal Processing Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.