LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling the Fibrillation of Kevlar® KM2 Single Fibers Subjected to Transverse Compression

Photo by demoya from unsplash

In this work, fibrillation is introduced as an energy absorbing mechanism in the modeling of Kevlar® KM2 single fibers subjected to quasi-static transverse compression. Fibrillation is simulated using a finite… Click to show full abstract

In this work, fibrillation is introduced as an energy absorbing mechanism in the modeling of Kevlar® KM2 single fibers subjected to quasi-static transverse compression. Fibrillation is simulated using a finite element model of the fiber cross-section containing discrete fibrils connected by interfibrillar cohesive zones. Model predictions of nominal stress-strain response for an assumed bilinear cohesive traction-separation interfibrillar behavior are compared to experimental data. Analysis shows that modeling of the microstructural fibril network, represented by a distribution of strong cohesive interactions, is necessary to capture the experimental response. The model provides valuable insight into the unique deformation mechanisms governing fiber fibrillation under transverse compression.

Keywords: fibrillation; kevlar km2; transverse compression; km2 single; single fibers

Journal Title: Fibers and Polymers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.