Replacement of fossil fuels has to be accompanied by the incorporation of bio-based procedures for the production of fine chemicals. With this aim, the microalga Chlamydomonas reinhardtii was selected for… Click to show full abstract
Replacement of fossil fuels has to be accompanied by the incorporation of bio-based procedures for the production of fine chemicals. With this aim, the microalga Chlamydomonas reinhardtii was selected for its ability to accumulate starch, an environmentally-friendly alternative source of chemical building blocks, such as 5'-hydroxymethylfurfural or levulinic acid. The content of appreciated lipophilic coproducts was assessed in the selected microalga cultured at different nutritional conditions; and the parameters for the acidic hydrolysis of the algal biomass, obtained after pigments extraction, were optimized using a Central Composite Design. Response Surface Methodology predicted that the optimal hydrolysis conditions were elevated temperature, high DMSO % and short hydrolysis time for glucose. LA was favored at long times and high acid % and 5'-HMF at lower acid % and high DMSO %. Chlamydomonas can therefore be used as a sustainable feedstock for the simultaneous production of high-added value lipophilic compounds and platform chemicals.
               
Click one of the above tabs to view related content.