LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of amine and vinyl functional groups of silanes on total performance of thermoplastic-based composites

Photo from wikipedia

Abstract The influence of amine (polar) and vinyl (nonpolar) functionalized organosilanes were investigated on the total performance of neat high-density polyethylene (HDPE) and wood-HDPE composites. Thus, micro-size silicate-based mineral fillers… Click to show full abstract

Abstract The influence of amine (polar) and vinyl (nonpolar) functionalized organosilanes were investigated on the total performance of neat high-density polyethylene (HDPE) and wood-HDPE composites. Thus, micro-size silicate-based mineral fillers were treated with 3 mass% amine and vinyl silanes and then 15 and 30 mass% plus 1 and 5 mass% of treated mineral fillers were blended with neat HDPE and wood-HDPE composites, respectively. Based on the achieved mechanical, thermal, rheological, water absorption, and microstructural results, the affinity of amine functional group and HDPE matrix predominantly decreased the rigidity, improved the thermal stability, reduced the water uptake, and facilitated the dispersion of fillers within the polymeric composite. As demonstrated by FTIR test, due to the lack of chemical bonding between the polyethylene and amine/vinyl functional groups, the electrostatic forces can explain the affinity between the filler and matrix. The affinity of the non-polar vinyl group and non-polar HDPE matrix resulted in the agglomeration of mineral fillers that can represent the repulsive electrostatic forces between the vinyl treated filler and the polymeric matrix.

Keywords: total performance; hdpe; amine vinyl; vinyl; vinyl functional; influence amine

Journal Title: Construction and Building Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.