LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Active electrochemical interfaces stabilized through self-organized potential oscillations

Photo from archive.org

Abstract Some electrochemical systems are known to have higher than average efficiency when operated under an oscillatory regime. Given the compromise between activity and stability, the stability of electrochemical interfaces… Click to show full abstract

Abstract Some electrochemical systems are known to have higher than average efficiency when operated under an oscillatory regime. Given the compromise between activity and stability, the stability of electrochemical interfaces in a self-organized, oscillatory state must be taken into account. Here we evaluate the electro-oxidation of methanol and formic acid on platinum under regular and oscillatory conditions, and study the stability by following the Pt dissolution rates in situ with a stationary probe rotating disk electrode (SPRDE) coupled to an inductively coupled plasma mass spectrometer (ICP-MS). Generally speaking, as the electro-oxidation reaction proceeds, the platinum dissolution rate increases considerably. To guarantee Pt stability, the potential must be kept below 1.0 V vs. RHE. Interestingly, no dissolution is detectable when the electrode potential undergoes temporary self-organization, ensuring a stable and active interface.

Keywords: self organized; organized potential; electrochemical interfaces; active electrochemical; interfaces stabilized; stabilized self

Journal Title: Electrochemistry Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.