LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.

Photo by umbriferous from unsplash

Tropospheric ozone in the surface air has become the primary atmospheric pollutant in Hangzhou, China, in recent years. Previous analysis is not enough to decode it for better regulation. Therefore,… Click to show full abstract

Tropospheric ozone in the surface air has become the primary atmospheric pollutant in Hangzhou, China, in recent years. Previous analysis is not enough to decode it for better regulation. Therefore, we use the traditional atmospheric model, Weather Research and Forecasting coupled with Community Multi-scale Air Quality (WRF-CMAQ), and machine learning models, Extreme Learning Machine (ELM), Multi-layer Perceptron (MLP), Random Forest (RF) and Recurrent Neural Network (RNN) to analyze and predict the ozone in the surface air in Hangzhou, China, using meteorology and air pollutants as input. We firstly quantitatively demonstrate that the dew-point deficit, instead of temperature and relative humidity, is the predominant meteorological factor in shaping tropospheric ozone. Urban heat island, daily direct solar radiation time, wind speed and wind direction play trivial role in impacting tropospheric ozone. NO2 is the primary influential factors both for hourly ozone and daily O3-8 h due to the titration effect. The most environmental-friendly way to mitigate the ozone pollution is to lower the volatile organic compounds (VOCs) with the highest ozone formation potentials. We deduce that the tropospheric ozone formation process tends to be not only non-linear but also non-smooth. Compared with the traditional atmospheric models, machine learning, whose characteristics are rapid convergence, short calculating time, adaptation of forecasting episodes, small program memory, higher accuracy and less cost, is able to predict tropospheric ozone more accurately.

Keywords: hangzhou china; machine learning; tropospheric ozone; traditional atmospheric; ozone

Journal Title: Environmental pollution
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.