LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation, identification, expression and subcellular localization of PPARG gene in buffalo mammary gland.

Photo by xavier_von_erlach from unsplash

Peroxisome proliferator-activated receptor gamma (PPARG), as a member of the nuclear receptor superfamily, plays an important role in adipocyte differentiation and regulation of lipid and glucose metabolism. In this study,… Click to show full abstract

Peroxisome proliferator-activated receptor gamma (PPARG), as a member of the nuclear receptor superfamily, plays an important role in adipocyte differentiation and regulation of lipid and glucose metabolism. In this study, the transcripts of PPARG gene were isolated and identified in buffalo mammary gland. The results showed that two types of transcripts (PPARG1 and PPARG2) of PPARG gene produced by alternative 5' end use were expressed in buffalo mammary gland, and each of them had four different alternative splicing variants. The PPARG1 includes PPARG1a, PPARG1b, PPARG1c and PPARG1d, while the PPARG2 contains PPARG2a, PPARG2b, PPARG2c and PPARG2d. Among them, only PPARG1a, PPARG2a and PPARG2d can encode complete functional proteins with three complete functional domains, and the rest encode truncated proteins with incomplete functional domains. All the eight variants of PPARG protein do not contain transmembrane regions and signal peptides, but their conserved domain, secondary and tertiary structure and subcellular localization were different. Subcellular localization confirmed that the main transcripts PPARG1a and PPARG2a played a functional role in the nucleus, which was consistent with the results by in silico prediction. RT-qPCR analysis of buffalo mammary tissue showed that the mRNA expression levels of PPARG1 and PPARG2 in lactation were higher than those in non-lactation, and the expression levels of transcripts PPARG2d and PPARG1b+PPARG2b in lactating stage were also higher than those in non-lactating stage, but the mRNA abundance of transcripts PPARG1c, PPARG1d and PPARG2c in non-lactating period was higher than that in lactating period. The results of this study suggest that PPARG1 and PPARG2 may play important role in buffalo milk fat synthesis, and the eight alternative splicing variants found here are likely to be related to the post-transcriptional regulation of lactation.

Keywords: pparg gene; mammary gland; subcellular localization; buffalo mammary; gene

Journal Title: Gene
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.