Abstract Herein, reduced graphene oxide supported well-dispersed bimetallic AuPt alloy nanodendrites (AuPt ANDs/rGO) were fabricated by a one-pot coreduction approach using ionic liquid (1-aminopropyl-3-methylimidazolium bromide, [APMIm]Br) as the stabilizer and… Click to show full abstract
Abstract Herein, reduced graphene oxide supported well-dispersed bimetallic AuPt alloy nanodendrites (AuPt ANDs/rGO) were fabricated by a one-pot coreduction approach using ionic liquid (1-aminopropyl-3-methylimidazolium bromide, [APMIm]Br) as the stabilizer and capping agent. There is no any other polymer or seed involved. Characterized measurements include transmission electron microscopy (TEM), high angle annular dark-field scanning TEM (HAADF-STEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The typical samples displayed excellent electrocatalytic activity and durability towards hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR) in contrast with Pt nanocrystals/rGO and commercial Pt/C (50%) catalysts, which make it promising for practical catalysis in energy conversion and storage.
               
Click one of the above tabs to view related content.