LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface adsorption and encapsulated storage of H2 molecules in a cagelike (MgO)12 cluster

Photo from wikipedia

Abstract Cluster-based materials are candidate materials for solid-state hydrogen storage owing to their special geometric and electronic structures. The surface adsorption and the encapsulated storage of H2 molecules in a… Click to show full abstract

Abstract Cluster-based materials are candidate materials for solid-state hydrogen storage owing to their special geometric and electronic structures. The surface adsorption and the encapsulated storage of H2 molecules in a cagelike (MgO)12 cluster have been studied using density functional theory (DFT) calculations including a dispersion interaction. The results revealed that the cagelike (MgO)12 cluster surface can adsorb 24 H2 molecules with an average adsorption energy of 0.116 eV/H2, which brings about a gravimetric density of 9.1 wt%. Compared with dispersion-corrected DFT calculations, the traditional DFT method substantially underestimates the surface adsorption strength. According to symmetric configurations, a maximum capacity of six H2 molecules can be stored in the interior space of the cagelike (MgO)12 cluster. The encapsulated H2 molecules are trapped by stepwise energy barriers of 0.433–2.550 eV, although the storage is an endothermic process. The present study will be beneficial for hydrogen storage in cagelike clusters and assembled porous materials.

Keywords: surface adsorption; storage; mgo cluster; cagelike mgo; cluster

Journal Title: International Journal of Hydrogen Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.