LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fuel cell systems for long-endurance autonomous underwater vehicles – challenges and benefits

Photo from wikipedia

Abstract Autonomous underwater vehicles (AUVs) are programmable, robotic vehicles that can drift, drive, or glide through the ocean without real-time control by human operators. AUVs that also can follow a… Click to show full abstract

Abstract Autonomous underwater vehicles (AUVs) are programmable, robotic vehicles that can drift, drive, or glide through the ocean without real-time control by human operators. AUVs that also can follow a planned trajectory with a chosen depth profile are used for geophysical surveys, subsea pipeline inspection, marine archaeology, and more. Most AUVs are followed by a mother ship that adds significantly to the cost of an AUV mission. One pathway to reduce this need is to develop long-endurance AUVs by improving navigation, autonomy and energy storage. Long-endurance AUVs can open up for more challenging mission types than what is possible today. Fuel cell systems are a key technology for increasing the endurance of AUVs beyond the capability of batteries. However, several challenges exist for underwater operation of fuel cell systems. These are related to storage or generation of hydrogen and oxygen, buoyancy and trim, and the demanding environment of the ambient seawater. Protecting the fuel cell inside a sealed container brings along more challenges related to condensation, cooling and accumulation of inert gases or reactants. This paper elaborates on these technical challenges and describes the solutions that the Norwegian Defence Research Establishment (FFI) has chosen in its development of a fuel cell system for long-endurance AUVs. The reported solutions enabled a 24 h demonstration of FFI's fuel cell system under water. The remaining work towards a prototype sea trial is outlined.

Keywords: long endurance; cell systems; fuel; fuel cell; auvs

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.