Abstract A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques. The porous Ta-10%Nb alloy offers the capability of… Click to show full abstract
Abstract A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques. The porous Ta-10%Nb alloy offers the capability of processing a pore size of 300-600 μm, a porosity of (68.0±0.41)%, and open porosity of (93.5±2.6)%. The alloy also shows desirable mechanical properties similar to those of cancellous bone with the elastic modulus and the comprehensive strength of (2.54±0.5) GPa and (83.43±2.5) MPa, respectively. The morphology of the pores in the porous Ta-Nb alloy shows a good interconnected three-dimension (3D) network open cell structure. It is also found that the rat MC3T3-E1 cell can well adhere, grow and proliferate on the porous Ta-Nb alloy. The interaction of the porous alloy on cells is attributed to its desirable pore structure, porosity and the great surface area. The advanced mechanical and biocompatible properties of the porous alloy indicate that this material has promising potential applications in tissue engineering.
               
Click one of the above tabs to view related content.