We present a general simulation approach for fluid–solid interactions based on the fully Eulerian reference map technique. The approach permits the modelling of one or more finitely deformable continuum solid… Click to show full abstract
We present a general simulation approach for fluid–solid interactions based on the fully Eulerian reference map technique. The approach permits the modelling of one or more finitely deformable continuum solid bodies interacting with a fluid and with each other. A key advantage of this approach is its ease of use, as the solid and fluid are discretized on the same fixed grid, which greatly simplifies the coupling between the phases. We use the method to study a number of illustrative examples involving an incompressible Navier–Stokes fluid interacting with multiple neo-Hookean solids. Our method has several useful features including the ability to model solids with sharp corners and the ability to model actuated solids. The latter permits the simulation of active media such as swimmers, which we demonstrate. The method is validated favourably in the flag-flapping geometry, for which a number of experimental, numerical and analytical studies have been performed. We extend the flapping analysis beyond the thin-flag limit, revealing an additional destabilization mechanism to induce flapping.
               
Click one of the above tabs to view related content.