LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinct Dual C-Cl Isotope Fractionation Patterns during Anaerobic Biodegradation of 1,2-Dichloroethane: Potential To Characterize Microbial Degradation in the Field.

Photo from wikipedia

This study investigates, for the first time, dual C-Cl isotope fractionation during anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via dihaloelimination by Dehalococcoides and Dehalogenimonas-containing enrichment cultures. Isotopic fractionation of 1,2-DCA (εbulkC… Click to show full abstract

This study investigates, for the first time, dual C-Cl isotope fractionation during anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via dihaloelimination by Dehalococcoides and Dehalogenimonas-containing enrichment cultures. Isotopic fractionation of 1,2-DCA (εbulkC and εbulkCl) for Dehalococcoides (-33.0 ± 0.4‰ and -5.1 ± 0.1‰) and Dehalogenimonas-containing microcosms (-23 ± 2‰ and -12.0 ± 0.8‰) resulted in distinctly different dual element C-Cl isotope correlations (Λ = Δδ13C/Δδ37Cl ≈ εbulkC/εbulkCl), 6.8 ± 0.2 and 1.89 ± 0.02, respectively. Determined isotope effects and detected products suggest that the difference on the obtained Λ values for biodihaloelimination could be associated with a different mode of concerted bond cleavage rather than two different reaction pathways (i.e., stepwise vs concerted). Λ values of 1,2-DCA were, for the first time, determined in two field sites under reducing conditions (2.1 ± 0.1 and 2.2 ± 2.9). They were similar to the one obtained for the Dehalogenimonas-containing microcosms (1.89 ± 0.02) and very different from those reported for aerobic degradation pathways in a previous laboratory study (7.6 ± 0.1 and 0.78 ± 0.03). Thus, this study illustrates the potential of a dual isotope analysis to differentiate between aerobic and anaerobic biodegradation pathways of 1,2-DCA in the field and suggests that this approach might also be used to characterize dihaloelimination of 1,2-DCA by different bacteria, which needs to be confirmed in future studies.

Keywords: dual isotope; fractionation; field; isotope; anaerobic biodegradation

Journal Title: Environmental science & technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.