LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a Novel Core–Shell Magnetic Fe3O4@CMC@ZIF-8-OH Composite with Outstanding Rubidium-Ion Capacity

Photo from wikipedia

A novel core–shell magnetic composite, Fe3O4@CMC@ZIF-8-OH, was innovatively prepared using zeolitic imidazolate frameworks (ZIF-8) functionalized with carboxymethyl cellulose (CMC), Fe3O4, and phenol via wet impregnation dispersion and hydrothermal reaction techniques.… Click to show full abstract

A novel core–shell magnetic composite, Fe3O4@CMC@ZIF-8-OH, was innovatively prepared using zeolitic imidazolate frameworks (ZIF-8) functionalized with carboxymethyl cellulose (CMC), Fe3O4, and phenol via wet impregnation dispersion and hydrothermal reaction techniques. Rubidium ions (Rb+ ions) can be conveniently collected from an aqueous solution due to the contribution of Fe3O4 magnetic properties. The adsorption capacity of Rb+ ions can be obviously increased because of the phenolic hydroxyl group existing on ZIF-8 with high surface area and water-resistant performance. The as-synthesized novel composites were examined using N2 adsorption–desorption, scanning electron microscopy combined with an energy-dispersive X-ray system, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, etc. The results revealed that the Fe3O4, phenol, and CMC were assembled in the ZIF-8 structure. Rb+ ions have a high adsorption rate and an extraordinary up...

Keywords: shell magnetic; core shell; cmc; fe3o4; zif; novel core

Journal Title: Journal of Chemical & Engineering Data
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.