LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical Investigations of Isoprene Polymerization Catalyzed by Cationic Half-Sandwich Scandium Complexes Bearing a Coordinative Side Arm

Photo by vita_belvita from unsplash

Density functional theory studies have been conducted for isoprene polymerization catalyzed by the cationic half-sandwich scandium alkyl species containing a methoxy side arm [(C5Me4C6H4OMe-o)Sc(CH2SiMe3)]+ (1) and that containing a phosphine… Click to show full abstract

Density functional theory studies have been conducted for isoprene polymerization catalyzed by the cationic half-sandwich scandium alkyl species containing a methoxy side arm [(C5Me4C6H4OMe-o)Sc(CH2SiMe3)]+ (1) and that containing a phosphine oxide side arm [{C5Me4SiMe2CH2P(O)Ph2}Sc(CH2SiMe3)]+ (2). It has been found that trans-1,4-polymerization of isoprene by species 1 prefers an insertion–isomerization mechanism: (i) an insertion of cis-isoprene into the metal–alkyl bond to give η3-π-anti-form, (ii) anti-syn isomerization of the resulting 1,2-disubstituted allyl complex to yield a syn-allyl form, (iii) repetitive insertion of cis-isoprene into the metal–syn-allyl bond and subsequent anti–syn isomerization. The resulting η3-π-syn-allyl species is suitable for more kinetically favorable cis-monomer insertion. The stability of the key transition state involved in the most feasible pathway could be ascribed to the smaller deformation of cis-isoprene and stronger interaction between the cis-isoprene moiety ...

Keywords: side arm; polymerization catalyzed; isoprene polymerization; catalyzed cationic; side

Journal Title: Organometallics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.