LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct C-H Radiocyanation of Arenes via Organic Photoredox Catalysis.

Innovative labeling methods to incorporate the short-lived positron emitter carbon-11(11C) into bioactive molecules are attractive for positron emission tomography (PET) tracer discovery. Herein, we report a direct C-H radiocyanation method… Click to show full abstract

Innovative labeling methods to incorporate the short-lived positron emitter carbon-11(11C) into bioactive molecules are attractive for positron emission tomography (PET) tracer discovery. Herein, we report a direct C-H radiocyanation method that incorporates [11C]cyanide (11CN-) to a series of functional electron-rich arenes via photoredox catalysis. This photoredox-mediated radiocyanation can proceed in an aerobic environment and is not moisture sensitive, which allows for ease of reaction setup and for scalable synthesis of 11C-aryl nitriles from readily available precursors.

Keywords: direct radiocyanation; arenes via; photoredox catalysis; radiocyanation

Journal Title: Organic letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.