LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Durable Nanocellulose-Stabilized Emulsions of Dithizone/Chloroform in Water for Hg2+ Detection: A Novel Approach for a Classical Problem

Photo from wikipedia

The use of dithizone (DTZ) for colorimetric heavy-metal detection is approximately one century old. However, its pending stability issues and the need for simple indicators justify further research. Using cellulose… Click to show full abstract

The use of dithizone (DTZ) for colorimetric heavy-metal detection is approximately one century old. However, its pending stability issues and the need for simple indicators justify further research. Using cellulose nanofibers, we attained DTZ-containing emulsions with high stability. These emulsions had water (at least 95 wt %) and acetic acid (1–8 mL/L) conforming the continuous phase, while dispersed droplets of diameter <1 μm contained chloroform-solvated DTZ (3 wt %). The solvation cluster was computed by molecular dynamics simulations, suggesting that chloroform slightly reduces the dihedral angle between the two sides of the thiocarbazone chain. Nanocellulose concentrations over 0.2 wt % sufficed to obtain macroscopically homogeneous mixtures with no phase separation. Furthermore, the rate of degradation of DTZ in the nanocellulose-stabilized emulsion did not differ significantly from a DTZ/chloroform solution, outperforming DTZ/toluene and DTZ/acetonitrile. Not only is the emulsion readily and immediately responsive to mercury(II), but it also decreases interferences from other ions and from natural samples. Unexpectedly, neither lead(II) nor cadmium(II) triggered a visual response at trace concentrations. The limit of detection of these emulsions is 15 μM or 3 mg/L, exceeding WHO limits for mercury(II) in drinking water, but they could be effective at raising alarms.

Keywords: water; durable nanocellulose; stabilized emulsions; detection; nanocellulose stabilized; emulsions dithizone

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.