LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macroporous hydrogel scaffolds with tunable physicochemical properties for tissue engineering constructed using renewable polysaccharides.

Photo from wikipedia

Polysaccharides have recently attracted increasing attention in the construction of hydrogel devices for biomedical applications. However, polysaccharide-based hydrogels are not suitable for most preclinical applications because of their limited mechanical… Click to show full abstract

Polysaccharides have recently attracted increasing attention in the construction of hydrogel devices for biomedical applications. However, polysaccharide-based hydrogels are not suitable for most preclinical applications because of their limited mechanical properties and poor tunability. In this study, we employed a simple and eco-friendly approach to produce a macroporous polysaccharide hydrogel composed of salecan and κ-carrageenan without the use of toxic chemicals. We evaluated the physicochemical properties of the obtained salecan/κ-carrageenan hydrogel and found that its viscoelasticity, morphology, swelling, and thermal stability could be simply controlled by changing the polysaccharide dose in the pre-gel solution. The co-incubation of the fabricated hydrogel with mouse fibroblast cells demonstrated that the hydrogel can support cell adhesion, migration, and growth. Moreover, the hydrogel exhibited good biocompatibility in vivo. Overall, the findings provide a new strategy for the fabrication and optimization of polysaccharide-based hydrogel scaffolds for application in tissue engineering.

Keywords: hydrogel; physicochemical properties; hydrogel scaffolds; macroporous hydrogel; tissue engineering

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.