LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ganglioside Nanocluster-Targeting Peptidyl Inhibitor Prevents Amyloid β Fibril Formation on the Neuronal Membrane.

Photo from wikipedia

Neurotoxicity caused by peptide and protein aggregates is associated with the onset of neurodegenerative diseases. Accumulation of the amyloid β protein (Aβ) induced by neuronal ganglioside-enriched nanodomains (nanoclusters) in the… Click to show full abstract

Neurotoxicity caused by peptide and protein aggregates is associated with the onset of neurodegenerative diseases. Accumulation of the amyloid β protein (Aβ) induced by neuronal ganglioside-enriched nanodomains (nanoclusters) in the presynaptic neuronal membrane, resulting in toxic oligomeric and fibrous forms, is implicated in the onset of Alzheimer's disease (AD). In the current study, we found that the ganglioside cluster-binding peptide (GCBP), a pentadecapeptide VWRLLAPPFSNRLLP that binds to ganglioside-enriched nanoclusters, inhibits the formation of Aβ assemblies with an IC50 of 12 pM and also removes Aβ fibrils deposited on the lipid membrane. Thus, in addition to inhibiting Aβ assembly formation, GCBP effectively clears toxic Aβ assemblies as well, thereby suppressing neuronal cellular damage and death induced by such assemblies. These results indicate that ganglioside cluster-binding molecules may act as novel Aβ-targeting drugs with a unique mechanism of action that may be utilized to ameliorate AD.

Keywords: ganglioside nanocluster; nanocluster targeting; membrane; formation; neuronal membrane

Journal Title: ACS chemical neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.