LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anomalous Confinement Slows Surface Fluctuations of Star Polymer Melt Films

Photo from wikipedia

The unusually large film thickness at which confinement effects manifest themselves in surface fluctuations of unentangled four-arm star polymers has been defined using film thicknesses from 10Rg to 107Rg. For… Click to show full abstract

The unusually large film thickness at which confinement effects manifest themselves in surface fluctuations of unentangled four-arm star polymers has been defined using film thicknesses from 10Rg to 107Rg. For 15k four-arm star polystyrene (SPS), confinement appears at a thickness between 112 nm (40Rg) and 72 nm (26Rg), which is remarkably larger than the thicknesses at which confinement appears for unentangled 6k linear (<15 nm, <7Rg) and 6k and 14k cyclic (24 and 22 nm, respectively) polystyrenes. Data for 15k star films can be rationalized using a two-layer model with a 17 nm (6Rg) thick highly viscous layer at the substrate, which is significantly thicker than the 1Rg thick “irreversibly adsorbed” layer. For a 29 nm (10Rg) thick film, more striking confinement occurs due to the combined influence of both interfaces. These results underscore the extraordinary role long-chain branching plays in dictating surface fluctuations of thin films.

Keywords: confinement slows; slows surface; confinement; surface fluctuations; anomalous confinement; fluctuations star

Journal Title: ACS Macro Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.