Dysregulation of calpains 1 and 2 has been implicated in a variety of pathological disorders including ischemia/reperfusion injuries, kidney diseases, cataract formation, and neurodegenerative diseases such as Alzheimer's disease (AD).… Click to show full abstract
Dysregulation of calpains 1 and 2 has been implicated in a variety of pathological disorders including ischemia/reperfusion injuries, kidney diseases, cataract formation, and neurodegenerative diseases such as Alzheimer's disease (AD). 2-(3-Phenyl-1H)-pyrazol-1-yl)nicotinamides represent a series of novel and potent calpain inhibitors with high selectivity and in vivo efficacy. However, carbonyl reduction leading to the formation of the inactive hydroxyamide was identified as major metabolic liability in monkey and human, a pathway not reflected by routine absorption, distribution, metabolism, and excretion (ADME) assays. Using cytosolic clearance as a tailored in vitro ADME assay coupled with in vitro hepatocyte metabolism enabled the identification of analogues with enhanced stability against carbonyl reduction. These efforts led to the identification of P1' modified calpain inhibitors with significantly improved pharmacokinetic profile including P1' N-methoxyamide 23 as potential candidate compound for non-central nervous system indications.
               
Click one of the above tabs to view related content.