LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superionic Conduction in One-Dimensional Nanostructures.

Photo by illiyapresents from unsplash

Nanostructuring has become a powerful tool for tuning the electronic properties of materials and enhancing transport. As an example of relevance to next-generation battery technologies, nanocrystals have shown promise for… Click to show full abstract

Nanostructuring has become a powerful tool for tuning the electronic properties of materials and enhancing transport. As an example of relevance to next-generation battery technologies, nanocrystals have shown promise for realizing fast-ion conduction in solids; however, dissipationless ion transport over extended length scales is hindered by lossy interfaces formed between nanocrystals in a solid. Here we address this challenge by exploiting one-dimensional nanostructures for ion transport. Superionic conduction, with a record-high ionic conductivity of ∼4 S/cm at 150 °C, is demonstrated in solid electrolytes fabricated from nanowires of the earth-abundant solid copper selenide. This quasi-one-dimensional ionic conductivity is ∼5× higher than that in bulk cuprous selenide. Nanoscale dimensions in the radial direction lower ion-hopping barriers, while mesoscopically long, interface-free transport paths are available for ion transport in the axial direction. One-dimensional nanostructures can exceptionally boost solid-state devices that rely on ion transport.

Keywords: conduction; transport; ion transport; one dimensional; dimensional nanostructures

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.