Researchers across varied fields increasingly are collecting and analyzing intensive longitudinal data (ILD) to examine processes across time at the individual level. Two types of relations are typically examined: lagged… Click to show full abstract
Researchers across varied fields increasingly are collecting and analyzing intensive longitudinal data (ILD) to examine processes across time at the individual level. Two types of relations are typically examined: lagged and contemporaneous. Lagged relations capture how variables at a prior time point can be used to explain variance in variables at a later time point. These are always modeled using auto- and cross-regressions by means of vector autoregression (VAR). By contrast, there are two types of relations commonly used to model the contemporaneous relations, which model how variables relate instantaneously. Until now, researchers must opt to either model contemporaneous relations as undirected relations among residuals (e.g., partial or full correlations) or as directed relations among the variables (e.g., paths or regressions). The choice for how to model contemporaneous relations has implications for inferences as well as the potential to introduce bias in the VAR lagged relations if the wrong type of relation is used. This article introduces a novel data-driven method, hybrid-group iterative multiple model estimation (GIMME), that provides a solution to the problem of having to choose one or the other type of contemporaneous relation to model. The modeling framework utilized in hybrid-GIMME allows for both types of contemporaneous relations in addition to the standard VAR relations. Both simulated and empirical data were used to test the performance of hybrid-GIMME. Results suggest this is a robust method for recovering contemporaneous relations in an exploratory manner, particularly with an ample number of time points per person. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
               
Click one of the above tabs to view related content.