Nanoclusters offer a fascinating possibility of studying the evolution of properties of a physical system by varying the number, size and inter-cluster separation of a given cluster to go from… Click to show full abstract
Nanoclusters offer a fascinating possibility of studying the evolution of properties of a physical system by varying the number, size and inter-cluster separation of a given cluster to go from one limit to another. By systematically varying the inter-cluster separation in a nanocluster assembly of Ni40Pd60 alloy, that is known to be a metal in bulk, we observe an unusual and hitherto unreported, spatial dimension change as well as a change in the transport mechanism. In the nanocluster form, the temperature dependent resistance shows an activated behavior for virtually all inter-cluster separations, contrary to, the bulk metallic behaviour. At large average inter-cluster separation, the transport happens via three dimensional Efros-Shklovskii hopping, due to the opening of a Coulomb gap at the Fermi surface. With a reduction in the inter-cluster separation, the transport mechanism changes from three dimensional Efros-Shklovskii hopping to that of a three dimensional Mott variable range hopping (VRH) due to the closing up of the gap. With a further reduction in average inter-cluster separation, the three dimensional Mott VRH changes to that of a two dimensional Mott VRH with additional signatures of an insulator to a weak metal-like transition in this particular assembly. So, nanoclusters offer a paradigm for studying the important problem of evolution of charge transport in physical systems with the possibility of directly tuning the average inter-cluster separation enabling the system to go from insulating to metallic limit via intermediate changes in the charge transport mechanism.
               
Click one of the above tabs to view related content.