Transition Metal Dichalcogenides (TMDs) are one of the most studied two-dimensional materials in the last 5–10 years due to their extremely interesting layer dependent properties. Despite the presence of vast… Click to show full abstract
Transition Metal Dichalcogenides (TMDs) are one of the most studied two-dimensional materials in the last 5–10 years due to their extremely interesting layer dependent properties. Despite the presence of vast research work on TMDs, the complex relation between the electro-chemical and physical properties make them the subject of further research. Our main objective is to provide a better insight into the electronic structure of TMDs. This will help us better understand the stability of the bilayer post growth homo/hetero products based on the various edge-termination, and different stacking of the two layers. In this regard, two Tungsten (W) based non-periodic chalcogenide flakes (sulfides and selenides) were considered. An in-depth analysis of their different edge termination and stacking arrangement was performed via Density Functional Theory method using VASP software. Our finding indicates the preference of chalcogenide (c-) terminated structures over the metal (m-) terminated structures for both homo and heterobilayers, and thus strongly suggests the nonexistence of the m-terminated TMDs bilayer products.
               
Click one of the above tabs to view related content.