The nanoparticle (NP) surfactants generated in situ by binding NPs and polymers can assemble into an elastic NP monolayer at the interface of two immiscible liquids, structuring the liquids. Janus… Click to show full abstract
The nanoparticle (NP) surfactants generated in situ by binding NPs and polymers can assemble into an elastic NP monolayer at the interface of two immiscible liquids, structuring the liquids. Janus NPs can be more strongly bound to the interface than the NP surfactants, but they are unable to structure liquids into complex shapes due to the difficulty of assembling the jamming arrays. By molecular dynamics simulations, we give an insight into the better performance of NP surfactants than Janus NPs on dynamically structuring liquids. The high energy binding of Janus NPs to the interface will drive the Janus NPs to assemble into micelles in binary liquids. The micelles are stabilized in one liquid by encapsulating a little of the other liquid, hindering interfacial adsorption when the interface is marginally extended upon liquid deformation. In contrast, the in situ formed NP surfactants can rapidly fill the enlarged interfacial area to arrest the consecutive shape changes of the liquids. Moreover, NP surfactants can be designed with an appropriate coverage ratio (≤50%) of NP surface bearing host-guest sites to avoid dissolution and impart a desirable mechanical elasticity to their assembly.
               
Click one of the above tabs to view related content.