LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic covalent chemistry for architecture changing interpenetrated and single networks

Photo by trnavskauni from unsplash

Interpenetrating networks (IPN) comprise two or more networks which are woven but not covalently bonded to each other. This is in contrast to simple, or single Networks (SN), which contain… Click to show full abstract

Interpenetrating networks (IPN) comprise two or more networks which are woven but not covalently bonded to each other. This is in contrast to simple, or single Networks (SN), which contain only one network that is covalently crosslinked. This study develops SNs and IPNs using 2-hydroxyethyl acrylate as the monomer and (2-((1-(2-(acryloyloxy)ethyl)-2,5-dioxopyrrolidin-3-yl) thio)ethyl acrylate) (TMMDA) as a thermoresponsive dynamic thiol-Michael crosslinker. In the case of the IPN and SN materials the TMMDA is used as a thermoresponsive linker in each network, since TMMDA undergoes dynamic covalent exchange above 90 °C. In this way the SN and IPNs are kinetically trapped in their as synthesized structures until exposed to thermal stimulus. The focus of this study is to investigate how dynamic bond exchange can modulate material properties, after the material has been synthesized using the SN and IPN materials as model systems. The dynamic nature of the thiol-Michael crosslinker allows the transition of IPNs into SN like structures above 90 °C resulting in similar polymer architecture in both SN and IPN. Surprisingly, upon heating the SN materials also changed their mechanical properties, upon activation of the dynamic thiol-Michael bonds. This enhancement is proposed to occur by thermally activating the thiol-Michael bonds and reducing the number of floppy loops at higher temperature.

Keywords: chemistry; single networks; dynamic covalent; thiol michael

Journal Title: Polymer Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.