LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale analysis of electrical junctions in InGaP nanowires grown by template-assisted selective epitaxy

Photo from wikipedia

We report the analysis of the electrical properties of Inx−1GaxP nanowires (NWs) grown by template-assisted selective epitaxy. The individual NW properties are investigated by means of electron beam induced current… Click to show full abstract

We report the analysis of the electrical properties of Inx−1GaxP nanowires (NWs) grown by template-assisted selective epitaxy. The individual NW properties are investigated by means of electron beam induced current microscopy (EBIC) and current-voltage curves acquired on single nano-objects. First, a set of samples containing n-doped InGaP NWs grown on a p-doped Si substrate are investigated. The electrical activity of the hetero-junction between the NWs and the substrate is demonstrated and the material parameters are analyzed, namely, the n-doping level is determined in relation to the dopant flow used during the growth. These results were used to design and elaborate InGaP NWs containing a p-n homo-junction. The electrical activity of the homo-junction is evidenced using EBIC mapping on single NWs, and material parameters (namely, the doping and the minority carrier diffusion lengths) for the p- and n-doped InGaP segments are estimated. Finally, the first proof of a photovoltaic effect from the NW homo-junctions is obtained by photocurrent measurements of a contacted NW array under white light irradiation.We report the analysis of the electrical properties of Inx−1GaxP nanowires (NWs) grown by template-assisted selective epitaxy. The individual NW properties are investigated by means of electron beam induced current microscopy (EBIC) and current-voltage curves acquired on single nano-objects. First, a set of samples containing n-doped InGaP NWs grown on a p-doped Si substrate are investigated. The electrical activity of the hetero-junction between the NWs and the substrate is demonstrated and the material parameters are analyzed, namely, the n-doping level is determined in relation to the dopant flow used during the growth. These results were used to design and elaborate InGaP NWs containing a p-n homo-junction. The electrical activity of the homo-junction is evidenced using EBIC mapping on single NWs, and material parameters (namely, the doping and the minority carrier diffusion lengths) for the p- and n-doped InGaP segments are estimated. Finally, the first proof of a photovoltaic effect from the NW homo...

Keywords: grown template; microscopy; template assisted; homo; junction; analysis electrical

Journal Title: Applied Physics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.