ABSTRACT The problem of modeling the relationship between a set of covariates and a multivariate response with correlated components often arises in many areas of research such as genetics, psychometrics,… Click to show full abstract
ABSTRACT The problem of modeling the relationship between a set of covariates and a multivariate response with correlated components often arises in many areas of research such as genetics, psychometrics, signal processing. In the linear regression framework, such task can be addressed using a number of existing methods. In the high-dimensional sparse setting, most of these methods rely on the idea of penalization in order to efficiently estimate the regression matrix. Examples of such methods include the lasso, the group lasso, the adaptive group lasso or the simultaneous variable selection (SVS) method. Crucially, a suitably chosen penalty also allows for an efficient exploitation of the correlation structure within the multivariate response. In this paper we introduce a novel variant of such method called the adaptive SVS, which is closely linked with the adaptive group lasso. Via a simulation study we investigate its performance in the high-dimensional sparse regression setting. We provide a comparison with a number of other popular methods under different scenarios and show that the adaptive SVS is a powerful tool for efficient recovery of signal in such setting. The methods are applied to genetic data.
               
Click one of the above tabs to view related content.