LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Animal inflammation-based models of depression and their application to drug discovery

Photo from wikipedia

ABSTRACT Introduction: Depression, anxiety and other affective disorders are globally widespread and severely debilitating human brain diseases. Despite their high prevalence and mental health impact, affective pathogenesis is poorly understood,… Click to show full abstract

ABSTRACT Introduction: Depression, anxiety and other affective disorders are globally widespread and severely debilitating human brain diseases. Despite their high prevalence and mental health impact, affective pathogenesis is poorly understood, and often remains recurrent and resistant to treatment. The lack of efficient antidepressants and presently limited conceptual innovation necessitate novel approaches and new drug targets in the field of antidepressant therapy. Areas covered: Herein, the authors discuss the emerging role of neuro-immune interactions in affective pathogenesis, which can become useful targets for CNS drug discovery, including modulating neuroinflammatory pathways to alleviate affective pathogenesis. Expert opinion: Mounting evidence implicates microglia, polyunsaturated fatty acids (PUFAs), glucocorticoids and gut microbiota in both inflammation and depression. It is suggested that novel antidepressants can be developed based on targeting microglia-, PUFAs-, glucocorticoid- and gut microbiota-mediated cellular pathways. In addition, the authors call for a wider application of novel model organisms, such as zebrafish, in studying shared, evolutionarily conserved (and therefore, core) neuro-immune mechanisms of depression.

Keywords: discovery animal; inflammation; affective pathogenesis; drug; drug discovery

Journal Title: Expert Opinion on Drug Discovery
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.