LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of MIRA, a low-noise pixelated ASIC for the readout of micro-channel plates

Photo from wikipedia

We present the design of the first prototype of MIRA (MIcro-channel plate Readout ASIC) that has been designed to read out Micro-Channel Plates (MCP), in particular for UV spectroscopy. MIRA… Click to show full abstract

We present the design of the first prototype of MIRA (MIcro-channel plate Readout ASIC) that has been designed to read out Micro-Channel Plates (MCP), in particular for UV spectroscopy. MIRA will be able to detect the cloud of electrons generated by each photon interacting with the MCP, sustaining high local and global count rates to fully exploit the MCP intrinsic dynamic range with low dead time. The main rationale that guided the electronics design is the reduction of the input Equivalent Noise Charge (ENC) in order to allow operations with lower MCP gain, thus improving its lifetime, crucial aspect for long missions in space. MIRA features two selectable analog processing times, 133 ns or 280 ns (i.e. fast mode or slow mode), granting a count rate per pixel of 100 kcps. Moreover, it shows an Equivalent Noise Charge ENC =17erms− . A spatial resolution of 35 μm and an operation with zero dead time, due to the readout, are targeted. The low noise, high count rate and high spatial resolution requirements are expected by keeping a compact pixel size (35 μm × 35 μm) for a total of 32 × 32 pixels in a 2 mm × 2 mm ASIC area. In this work, the ASIC design is described.

Keywords: micro channel; micro; channel plates; low noise; design

Journal Title: Journal of Instrumentation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.