LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards the use of SDD as an absolute detector for high-energy neutron measurements

Photo from wikipedia

As of today, the standard method employed in tokamaks for the absolute measurement of the neutron flux (thus of the nuclear fusion power) is based on activation foils, being the… Click to show full abstract

As of today, the standard method employed in tokamaks for the absolute measurement of the neutron flux (thus of the nuclear fusion power) is based on activation foils, being the most robust and unbiased technique for the absolute determination of neutron fluence. However, this technique is not able to provide real-time data useful for the control of future fusion plants like DEMO. In this paper, we present some preliminary results about the R&D activity aimed at developing the Single-crystal Diamond Detectors (SDD) used for fast neutron measurements into an absolute neutron flux monitor. Tests have been conducted at the new NILE neutron source of the Rutherford-Appleton Laboratory, a facility with compact neutron generators with a maximum yield of 109 n/s and 1010 n/s for 2.5 MeV and 14 MeV neutrons, respectively. A series of neutron spectra and flux measurements have been taken with different SDD and associated DAQ. Comparisons with standard activation foils (and namely Fe, Zr, Al and Nb foils for 14 MeV neutrons and In for 2.5 MeV neutrons) and with other reference detectors are presented and discussed. Also discussed is the stability of the SDD over time when employed at high neutron rates in realistic neutron environment, and the effects of neutron irradiation on both the counting rate and detector resolution.

Keywords: neutron measurements; towards use; mev neutrons; detector; neutron; use sdd

Journal Title: Journal of Instrumentation
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.