LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Candida tropicalis Isolates from Mexican Republic Exhibit High Susceptibility to Bleomycin and Variable Susceptibility to Hydrogen Peroxide.

Photo from wikipedia

Candida sp. are found as part of the commensal flora in humans but can cause invasive candidiasis in patients with severe underlying disease, especially cancer patients. These patients are frequently… Click to show full abstract

Candida sp. are found as part of the commensal flora in humans but can cause invasive candidiasis in patients with severe underlying disease, especially cancer patients. These patients are frequently subjected to nonsurgical anticancer treatments such as ionizing radiation and anticancer drugs, which kill proliferating human cells by damaging DNA but also affect the microbiota of the patient. C. tropicalis, an emerging fungal pathogen, is associated with high mortality rates of cancer patients especially in tropical regions. In this study, we have investigated the in vitro susceptibility of 38 C. tropicalis clinical isolates from several Mexican hospitals to chronic treatments with several DNA damaging agents, including oxidizing compounds and anticancer drugs. C. tropicalis isolates displayed a high variability in their susceptibility to hydrogen peroxide (H2O2) while showing a high susceptibility to bleomycin (BLM), an anticancer drug that causes double-strand breaks in DNA. This contrasted with the moderate-to-high resistance exhibited by several C. albicans laboratory strains. At least for the C. tropicalis reference strain MYA3404, this susceptibility was hardly modified by the presence of serum. Our results open the possibility of using susceptibility to BLM to differentiate between C. tropicalis and C. albicans; however, analysis of a larger number of isolates is required. The use of BLM for prevention of C. tropicalis infections in neutropenic patients with cancer should be also evaluated. Finally, the variable susceptibility to H2O2 might be due to allelic variation of the histone acetyl-transferase complex which modulates the induction kinetics of H2O2-induced genes in C. tropicalis.

Keywords: high susceptibility; susceptibility; susceptibility hydrogen; hydrogen peroxide; tropicalis; tropicalis isolates

Journal Title: Microbial drug resistance
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.