LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential nuclear import regulates nuclear RNA inheritance following mitosis

Photo from wikipedia

Mitosis results in a dramatic reorganization of chromatin structure to promote chromosome compaction and segregation to daughter cells. Consequently, mitotic entry is accompanied by transcriptional silencing and removal of most… Click to show full abstract

Mitosis results in a dramatic reorganization of chromatin structure to promote chromosome compaction and segregation to daughter cells. Consequently, mitotic entry is accompanied by transcriptional silencing and removal of most chromatin-bound RNA from chromosomes. As cells exit mitosis, chromatin rapidly decondenses and transcription restarts as waves of differential gene expression. However, little is known about the fate of chromatin-bound RNAs following cell division. Here we explored whether nuclear RNA from the previous cell cycle is present in G1 nuclei following mitosis. We found that half of all nuclear RNA is inherited in a transcription-independent manner following mitosis. Interestingly, the snRNA U2 is efficiently inherited by G1 nuclei, while the lncRNAs NEAT1 and MALAT1 show no inheritance following mitosis. We found that the nuclear protein SAF-A, which is hypothesized to tether RNA to DNA, did not play a prominent role in nuclear RNA inheritance, indicating that the mechanism for RNA inheritance may not involve RNA chaperones that have chromatin-binding activity. Instead, we observe that the timing of RNA inheritance indicates that a select group of nuclear RNAs are reimported into the nucleus after the nuclear envelope has reassembled. Our work demonstrates that there is a fraction of nuclear RNA from the previous cell cycle that is reimported following mitosis and suggests that mitosis may serve as a time to reset the interaction of lncRNAs with chromatin.

Keywords: mitosis; following mitosis; chromatin; rna inheritance; nuclear rna

Journal Title: Molecular Biology of the Cell
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.