LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deformations of pre-symplectic structures and the Koszul L-infty-algebra

Photo by soheil_rb from unsplash

We study the deformation theory of pre-symplectic structures, i.e. closed two-forms of fixed rank. The main result is a parametrization of nearby deformations of a given pre-symplectic structure in terms… Click to show full abstract

We study the deformation theory of pre-symplectic structures, i.e. closed two-forms of fixed rank. The main result is a parametrization of nearby deformations of a given pre-symplectic structure in terms of an $L_\infty$-algebra, which we call Koszul $L_\infty$-algebra. This $L_\infty$-algebra is a cousin of the Koszul dg Lie algebra associated to a Poisson manifold. In addition, we show that a quotient of the Koszul $L_{\infty}$-algebra is isomorphic to the $L_\infty$-algebra which controls the deformations of the underlying characteristic foliation. Finally, we show that the infinitesimal deformations of pre-symplectic structures and of foliations are both obstructed.

Keywords: deformations pre; algebra; symplectic structures; koszul infty; pre symplectic; infty algebra

Journal Title: International Mathematics Research Notices
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.