Null models have become a crucial tool for understanding structure within incidence matrices across multiple biological contexts. For example, they have been widely used for the study of ecological and… Click to show full abstract
Null models have become a crucial tool for understanding structure within incidence matrices across multiple biological contexts. For example, they have been widely used for the study of ecological and biogeographic questions, testing hypotheses regarding patterns of community assembly, species co-occurrence and biodiversity. However, to our knowledge we remain without a general and flexible approach to study the mechanisms explaining such structures. Here, we provide a method for generating ‘correlation-informed’ null models, which combine the classic concept of null models and tools from community ecology, like joint statistical modelling. Generally, this model allows us to assess whether the information encoded within any given correlation matrix is predictive for explaining structural patterns observed within an incidence matrix. To demonstrate its utility, we apply our approach to two different case studies that represent examples of common scenarios encountered in community ecology. First, we use a phylogenetically informed null model to detect a strong evolutionary fingerprint within empirically observed food webs, reflecting key differences in the impact of shared evolutionary history when shaping the interactions of predators or prey. Second, we use multiple informed null models to identify which factors determine structural patterns of species assemblages, focusing in on the study of nestedness and the influence of site size, isolation, species range and species richness. In addition to offering a versatile way to study the mechanisms shaping the structure of any incidence matrix, including those describing ecological communities, our approach can also be adapted further to test even more sophisticated hypotheses.
               
Click one of the above tabs to view related content.