LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diffuse-interface lattice Boltzmann modeling of charged particle transport in Poiseuille flow.

Photo by glenncarstenspeters from unsplash

In this paper, we developed a coupled diffuse-interface lattice Boltzmann method (DI-LBM) to study the transport of a charged particle in the Poiseuille flow, which is governed by the Navier-Stokes… Click to show full abstract

In this paper, we developed a coupled diffuse-interface lattice Boltzmann method (DI-LBM) to study the transport of a charged particle in the Poiseuille flow, which is governed by the Navier-Stokes equations for fluid field and the Poisson-Boltzmann equation for electric potential field. We first validated the present DI-LBM through some classical benchmark problems, and then investigated the effect of electric field on the lateral migration of the particle in the Poiseuille flow. The numerical results show that the electric field has a significant influence on the particle migration. When an electric field in the vertical direction is applied to the charged particle initially located above the centerline of the channel, the equilibrium position of the particle would drop suddenly as the electric field is larger than a critical value. This is caused by the wall repulsion due to lubrication, the inertial lift related to shear slip, the lift owing to particle rotation, the lift due to the curvature of the undisturbed velocity profile, and the electric force. On the other hand, when an electric field in the horizontal direction is adopted, the equilibrium position of the particle would move toward the centerline of the channel with the increase of the electric field.

Keywords: electric field; poiseuille flow; charged particle; particle; field

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.