We demonstrate by molecular simulations that the Ostwald ripening of crystalline polymer nuclei within the fast-evaporation-induced 2D skin layer is retarded at suitable temperatures and evaporation rates. Such an anomalous… Click to show full abstract
We demonstrate by molecular simulations that the Ostwald ripening of crystalline polymer nuclei within the fast-evaporation-induced 2D skin layer is retarded at suitable temperatures and evaporation rates. Such an anomalous ripening can be attributed to the interplay between the thermodynamically driven diffusion of noncrystalline fragments toward the growing nuclei and the diffusive current away from the free surface caused by the densification in the nonequilibrium skin layer. The growth orientation of the nuclei inside the skin plane can be adjusted during this anomalous ripening process, which is beneficial for fabricating 2D polymer crystals.
               
Click one of the above tabs to view related content.