LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of Spin-Wave Moiré Edge and Cavity Modes in Twisted Magnetic Lattices

Photo by bagasvg from unsplash

We report the experimental observation of the spin-wave moir\'e edge and cavity modes using Brillouin light scattering spectro-microscopy in a nanostructured magnetic moir\'e lattice consisting of two twisted triangle antidot… Click to show full abstract

We report the experimental observation of the spin-wave moir\'e edge and cavity modes using Brillouin light scattering spectro-microscopy in a nanostructured magnetic moir\'e lattice consisting of two twisted triangle antidot lattices based on an yttrium iron garnet thin film. Spin-wave moir\'e edge modes are detected at an optimal twist angle and with a selective excitation frequency. At a given twist angle, the magnetic field acts as an additional degree of freedom for tuning the chiral behavior of the magnon edge modes. Micromagnetic simulations indicate that the edge modes emerge within the original magnonic band gap and at the intersection between a mini-flatband and a propagation magnon branch. Our theoretical estimate for the Berry curvature of the magnon-magnon coupling suggests a non-trivial topology for the chiral edge modes and confirms the key role played by the dipolar interaction. Our findings shed light on the topological nature of the magnon edge mode for emergent moir\'e magnonics.

Keywords: wave moir; magnon; observation spin; moir edge; edge; spin wave

Journal Title: Physical Review X
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.