LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 12-mW 10-GHz FMCW PLL Based on an Integrating DAC With 28-kHz RMS-Frequency-Error for 23-MHz/μs Slope and 1.2-GHz Chirp-Bandwidth

Photo by tumbao1949 from unsplash

A 10-GHz sub-sampling phase-locked loop (PLL) (SSPLL) with wideband low-noise frequency modulation for frequency-modulated continuous-wave (FMCW) radar applications is presented. It uses a low-power charge-integrating digital-to-analog converter (QDAC) to tune… Click to show full abstract

A 10-GHz sub-sampling phase-locked loop (PLL) (SSPLL) with wideband low-noise frequency modulation for frequency-modulated continuous-wave (FMCW) radar applications is presented. It uses a low-power charge-integrating digital-to-analog converter (QDAC) to tune the voltage-controlled oscillator (VCO) in a two-point modulation architecture. A full background calibration engine corrects for the nonlinearities in the QDAC modulation path. Implemented in a 28-nm CMOS process, the SSPLL consumes 11.7 mW (of which less-than 0.5 mW from the QDAC) to generate a 23.6-MHz/ $\mu \text{s}$ sawtooth chirp-slope with 28-kHz rms-frequency-error for 1.21-GHz chirp-bandwidth.

Keywords: chirp bandwidth; khz rms; ghz; rms frequency; ghz chirp; frequency error

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.