Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions… Click to show full abstract
Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction from high-dimensional raw data. Recently, deep learning networks have been developed and considered a promising technology in extracting high-level abstract features. However, most of these networks cannot capture deep target-related features for abnormality monitoring. Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples and targets is described by dynamic factors. Then, we design a corresponding target-driven reconstruction loss function to pretrain the deep network successively. Experimental results in an ironmaking plant demonstrate the effectiveness and feasibility of the proposed method.
               
Click one of the above tabs to view related content.