LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale Feature Interactive Network for Multifocus Image Fusion

Photo by usgs from unsplash

In deep learning (DL)-based multifocus image fusion, effective multiscale feature learning is a key issue to promote fusion performance. In this article, we propose a novel DL model named multiscale… Click to show full abstract

In deep learning (DL)-based multifocus image fusion, effective multiscale feature learning is a key issue to promote fusion performance. In this article, we propose a novel DL model named multiscale feature interactive network (MSFIN), which can segment the source images into focused and defocused regions accurately by sufficient interaction of multiscale features from layers of different depths in the network for multifocus image fusion. Specifically, based on the popular encoder–decoder framework, two functional modules, namely, multiscale feature fusion (MSFF) and coordinate attention upsample (CAU), are designed for interactive multiscale feature learning. Moreover, the weighted binary cross-entropy (WBCE) loss and the multilevel supervision (MLS) strategy are introduced to train the network more effectively. Qualitative and quantitative comparisons with 19 representative multifocus image fusion methods demonstrate that the proposed method can achieve state-of-the-art performance. The code of our method is available at https://github.com/yuliu316316/MSFIN-Fusion.

Keywords: multiscale feature; multifocus image; image fusion; fusion

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.