LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)

Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real-world requirements, e.g., strict deadlines or intertask… Click to show full abstract

Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real-world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We define a specification language, capability temporal logic, to describe rich, temporal properties involving tasks requiring the participation of multiple agents with multiple capabilities, e.g., sensors or end effectors. Arbitrary missions and team dynamics are jointly encoded as constraints in a mixed integer linear program, and solved efficiently using commercial off-the-shelf solvers. ScRATCHeS optionally allows optimization for maximal robustness to agent attrition at the penalty of increased computation time. We include an online replanning algorithm that adjusts the plan after an agent has dropped out. The flexible specification language, fast solution time, and optional robustness of ScRATCHeS provide a first step toward a multipurpose on-the-fly planning tool for tasking large teams of agents with multiple capabilities enacting missions with multiple tasks. We present randomized computational experiments to characterize scalability and hardware demonstrations to illustrate the applicability of our methods.

Keywords: robust algorithms; task based; based coordination; coordination high; algorithms task; scalable robust

Journal Title: IEEE Transactions on Robotics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.